Efficient I/O on the Cray XT

Jeff Larkin
Cray Supercomputing Center of Excellence
larkin@cray.com

With Help Of: Gene Wagenbreth

FOIROOMPUTLCA OO FA



Overview

What's the problem?
“Typical” Application 1/O
/O Solutions

A Solution That Works
Graphs, so many Graphs
Take Home Notes




What's The Problem?

Flops are Cheap, Bandwidth
Isn’t

Machines and Applications
aren’t getting any smaller

But...

 Isn't Lustre enough?

« Can't | use libraries?

* Doesn't it just work?
Without user or programmer
intervention, |/O will not
perform at peak

There is no Silver Bullet




C)RANY

“Typical” Application I/O

= THERE IS NO TYPICAL APPLICATION I/O

= There are several common methods, but 2 are very common

and problematic

« Single-writer reduction
* N-writer/N-reader to N-files

Simple Efficient



Single-writer Reduction
= The Plan

« All processors send to 1 1/0O
node for output

* File striped to maximum OSTs
= The Problem

* Even with maximum striping, 1
node will never achieve
maximum bandwidth

 single node 10 bandwidth is

approximately 200 MB/s

 reading/writing a terabyte
would require more than 1
hour at current I/O rates




N-Writer to N-Files

= The Plan

» Every process opens a file
and dumps its data

* Files striped to 1 OST
= The Problem

* Can lead to slow opens and
general filesystem slowness

 If the writes are not large,
performance will suffer

* Inconvenient
« Can only be used as input

for same number of nodes
" One Modification

* Use MPI-I/O for just 1 file

« Suffers when i/o results in
small buffers




What does efficient 1/0O look like?




C)RANY

Striking a Balance

Application Filesystem
Needs Limits




C)RANY

Subset of Readers/Writers Approach

1

1

= The Plan:

« Combine the best of our first two
/O methods

« Choose a subset of nodes to do
/O

« Send output to or Receive input
from 1 node in your subset

= The Benefits

- 1/O Buffering
» High Bandwidth, Low FS Stress

= The Costs

* |/O Nodes must sacrifice
memory for buffer

« Requires Code Changes



Subset of Readers/Writers Approach

= Assumes job runs on thousands of nodes
= Assumes job needs to do large I/O

= From data partitioning, identify groups of nodes such that:
- each node belongs to a single group
« data in each group is contiguous on disk
 there are approximately the same number of groups as OSTs

= Pick one node from each group to be the ionode
= Use MPI to transfer data within a group to its ionode
= Each IOnode reads/write shared disk file



Example Code: MPI Subset Communicator

create an MPI communicator that include only ionodes

call MPI COMM GROUP (MPI COMM WORLD,
WORLD GROUP, 1err)

call MPI GROUP INCL (WORLD_GROUP, niotasks,
listofiotasks, IO GROUP, 1err)

call MPI COMM CREATE (MPI COMM WORLD, IO GROUP,
MPI COMM IO, ierr)



Example Code: MPI I/O

open
call MPI FILE OPEN(MPI COMM IO, trim(filename),
filemode, finfo,mpifh, 1err)

read/write
call MPI FILE WRITE AT (mpifh, offset, 1iobuf,

bufsize, MPI REALS, status, lerr)

close
call MPI FILE CLOSE (mpifh,ilerr)



Example Code: I/0 Code Outline

= |ONode:
copy (scatter) this nodes data to IO buffer

loop over nonlIOnodes 1n this group
mpl recv data from compute node
copy (scatter) data to IO buffer
write data from IO buffer to disk

= Non-IONode:
copy data to mpi buffer

mpl send data to IO node



C)RANY

Sample Paritioning: POP

= datais3d-X,Y, Z
= X and Y dimensions are partitioned in blocks

= sample 4 node partition:

« Each of the 4 colored blocks represents one node’s part of the data
» Each of the two lighter colored blocks represent 1 I/0O Node
« 1/O Groups should be arranged so their data is contiguous on disk

Data from nodes 1 &
3 alternate on disk.
This will perform
slowly and can’t
adjust to more
processors.

Data from node 1 is

contiguous, followed

by data from node 2,
which is also
contiguous.



Sample Paritioning: POP

= Given a nearly square partitioning, the number of nodes simultaneously

performing 10 is approximately the square root of the total number of
compute nodes.

« 2500 compute nodes - 50 IO nodes
* 10000 compute nodes - 10010 nodes
« 25600 compute nodes - 160 10 nodes

= Many partitions allow a reasonable assignment of ionodes

For Example:

= An array of 8 byte reals (300, 400, 40) on each of 10000 nodes
* 4.8 million elements on each node
* 48 billion elements total
- 384 gigabytes data
« 50 - 100 seconds to read or write at 4 - 8 gbyte/sec
* 100 10 nodes



A Subset of Writers Benchmark

Using MPI 1/O

8.000E+09
7.000E+09
6.000E+09
5.000E+09
GB/sec 4.000E+09
3.000E+09
2.000E+09
1.000E+09

0.000E+00

O
Number of Writ 16 3
umber of Writers 20 Number of Cores

1024
2048



Benchmark Results: Things to Know

= Uses write_at rather than file partitioning

= Only write data...sorry
* Read data was largely similar

= |nitial benchmarking showed MPI transfers to be marginal, so
they were excluded in later benchmarking

= Real Application Data in the works, Come to CUG



Benchmark Results: 1 /O Node - Stripes

= Single 10 node, 10 megabyte buffer, 20 megabyte stripe size:
bandwidth of 10 write to disk

Number of stripes

1 10 50 100 150 160
150MB/s 134MB/s 135MB/s 139MB/s 149MB/s 148MB/s

= Using a single 10 node:
* number of stripes doesn't matter
- stripe size doesn't matter (timings not shown)



Benchmark Results: 1 /O Node - Stripes

7.00E+08

6.00E+08

5.00E+08

4.00E+08

3.00E+08

DOE

6.00E ..

5.00E+08

4.00E+08

3.00E+08

2.00E+08

1.00E+08

0.00E+00

1 Node, 10K Buffer

1 Node, 10MB Buffer

7.00E+08

6.00E+08

5.00E+08

4.00E+08

3.00E+08

2.00E+08

1.00E+08

0.00E+00|

640K
1920K
6.4M
19.2M




Benchmark Results: 1 I/0 Node — Buffer Size

= Single node, single stripe:

bandwidth of 10 write to disk for e
different buffer sizes :

- Buffer size is the size of 250808
contiguous memory on one IO

node written to disk with one 200808
write

= Buffer size should be at least 10
megabytes

1.50E+08

1.00E+08

5.00E+07 19.2M

6.4M
1920K

0.00E+00 640K Stripe

192K

100M



50 Writers, Varying Stripe Count, Size and Buffer Size

9.00E+09
8.00E+09
7.00E+09

6.00E+09

5.00E+09
4.00E+09
3.00E+09
2.00E+09
1.00E+09
0.00E+00

50 Writers, 1M Buffer

150

50

50 Writers, 10M Buffer

192K
640K
1920K
6.4M

19.2M

64K

50 Writers, 30M Buffer

150

192K
640K
1920K 6 4m

19.2M

50 Writers, 100M Buffer

192K

Stripe Size

640K
1920K
6.4M
19.2M

Stripes




150 Stripes, Varying Writers, Buffer, and Stripe Sizes

20 Writers, 150 Stripes

1.00E+10
9.00E+09
8.00E+09

7.00E+09
6.00E+09
5.00E+09
4.00E+09
3.00E+09
2.00E+09
1.00E+09
0.00E+00

64K
192K 640K 4950 10K
6.4M 49.om

1.00E+10
9.00E+09

2.00E+09
1.00E+09
0.00E+00

50 Writers, 150 Stripes

64K

X
N
D
-

640K
1920K
6.4M
19.2M

150 Writers, 150 Stripes

19.2M

300 Writers, 150 Stripes

X
N
D
-

640K
1920K
6.4M
19.2M




Cliff’s Take Home Notes

= Do Large I/O Operations in Parallel MPI-10

= Create a natural partitioning of nodes so that data will go to
disk in a way that makes sense

= Stripe as close to the maximum OSTs as possible given your
partitioning
= Use buffers of at least 1MB, 10MB if you can afford it

= Make your I/O flexible so that you can tune to the problem

and machine

* One hard-coded solution will meet your some of the time, but not all
of the time

= Come to CUG 2007 and see the application results!



